Children in Years 1 and 2 will be given a really solid foundation in the basic building blocks of mental and written arithmetic. Through being taught place value, children will develop an understanding of how numbers work, so that they are confident with 2-digit numbers and beginning to read and say numbers above 100 .

Addition and Subtraction: A focus on number bonds, first via practical hands-on experiences and subsequently using memorisation techniques, enables a good grounding in these crucial facts, and ensures that all children leave Year 2 knowing the pairs of numbers which make all the numbers up to 10 at least. Children will also have experienced and been taught pairs to 20 . Children's knowledge of number facts enables them to add several 1-digit numbers, and to add/subtract a 1-digit number to/from a 2digit number. Another important conceptual tool is the ability to add/subtract 1 or 10, and to understand which digit changes and why. This understanding is extended to enable children to add and subtract multiples of 10 to and from any 2-digit number. The most important application of this knowledge is the ability to add or subtract any pair of 2 -digit numbers by counting on or back in 10s and 1s. Children may extend this to adding by partitioning numbers into 10 s and 1 s .

Multiplication and Division: Children will be taught to count in $2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s , and will relate this skill to repeated addition. Children will meet and begin to learn the associated $\times 2, \times 3, \times 5$ and $\times 10$ tables. Engaging in a practical way with the concept of repeated addition and the use of arrays enables children to develop a preliminary understanding of multiplication, and asking them to consider how many groups of a given number make a total will introduce them to the idea of division. Children will also be taught to double and halve numbers, and will thus experience scaling up or down as a further aspect of multiplication and division.

Fractions: Fractions

 will be introduced as numbers and as operators, specifically in relation to halves, quarters and thirds.Preston Candover CE Primary School Mathematics Calculation Policy

Year 1			
	Mental calculation	Written calculation	Children will...
	Number bonds ('story' of 5, 6, 7, 8, 9 and 10) Count on in 1s from a given 2-digit number Add two 1-digit numbers Add three 1-digit numbers, spotting doubles or pairs to 10 Count on in 10s from any given 2-digit number Add 10 to any given 2-digit number Use number facts to add 1-digit numbers to 2-digit numbers e.g. Use $4+3$ to work out $24+3,34+3$ Add by putting the larger number first		Find pairs with a total of 10 Count in 1 s Count in 10s Count on 1 from any given 2-digit number
	Number bonds ('story' of 5, 6, 7, 8, 9 and 10) Count back in 1s from a given 2-digit number Subtract one 1-digit number from another Count back in 10s from any given 2-digit number Subtract 10 from any given 2-digit number Use number facts to subtract 1-digit numbers from 2digit numbers e.g. Use 7-2 to work out 27-2, 37-2		Find Pairs with a total of 10 Count back in 1 s from 20 to 0 Count back in 10s from 100 to 0 Count back 1 from any given 2-digit number
	Begin to count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Begin to say what three 5 s are by counting in 5 s , or what four 2 s are by counting in 2 s , etc. Double numbers to 10		Begin to count in 2 s and 10s Double numbers to 5 using fingers
	Begin to count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Find half of even numbers to 12 and know it is hard to halve odd numbers Find half of even numbers by sharing Begin to use visual and concrete arrays or 'sets of' to find how many sets of a small number make a larger number		Begin to count in 2 s and 10 s Find half of even numbers by sharing

Preston Candover CE Primary School Mathematics Calculation Policy

Year 2

Year 2			
	Mental calculation	Written calculation	Children will...
$\begin{gathered} Y 2 \\ + \end{gathered}$	Number bonds - know all the pairs of numbers which make all the numbers to 12 , and pairs with a total of 20 Count on in 1s and 10s from any given 2-digit number Add two or three 1-digit numbers Add a 1-digit number to any 2-digit number using number facts, including bridging multiples of 10 $\begin{aligned} & \text { e.g. } 45+4 \\ & \text { e.g. } 38+7 \end{aligned}$ Add 10 and small multiples of 10 to any given 2-digit number Add any pair of 2-digit numbers		Know pairs of numbers which make each total up to 10 Add two 1-digit numbers Add a 1-digit number to a 2-digit number by counting on in 1 s Add 10 and small multiples of 10 to a 2-digit number by counting on in 10 s
Y2	Number bonds - know all the pairs of numbers which make all the numbers to 12 Count back in 1s and 10s from any given 2-digit number Subtract a 1-digit number from any 2-digit number using number facts, including bridging multiples of 10 $\begin{aligned} & \text { e.g. } 56-3 \\ & \text { e.g. } 53-5 \end{aligned}$ Subtract 10 and small multiples of 10 from any given 2-digit number Subtract any pair of 2-digit numbers by counting back in 10s and 1s or by counting up		Know pairs of numbers which make each total up to 10 Subtract a 1-digit number from a 2-digit number by counting back in 1 s Subtract 10 and small multiples of 10 from a 2-digit number by counting back in 10 s
$\begin{gathered} Y 2 \\ x \end{gathered}$	Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Begin to count in 3 s Begin to understand that multiplication is repeated addition and to use arrays e.g. 3×4 is three rows of 4 dots Begin to learn the $\times 2, \times 3, \times 5$ and $\times 10$ tables, seeing		Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Begin to use and understand simple arrays e.g. 2×4 is two lots of four Double numbers up to 10 Double multiples of 10 to 50

Preston Candover CE Primary School Mathematics Calculation Policy

	these as 'lots of' e.g. 5 lots of 2, 6 lots of 2,7 lots of 2 Double numbers up to 20 Begin to double multiples of 5 to 100 Begin to double 2-digit numbers less than 50 with 1s digits of 1, 2, 3, 4 or 5		
$\begin{aligned} & Y 2 \\ & \div \end{aligned}$	Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Begin to count in 3 s Using fingers, say where a given number is in the 2 s , 5 s or 10s count e.g. 8 is the fourth number when I count in $2 s$ Relate division to grouping e.g. How many groups of 5 in 15? Halve numbers to 20 Begin to halve numbers to 40 and multiples of 10 to 100 Find $1 / 2,1 / 3,1 / 4$ and $3 / 4$ of a quantity of objects and of amounts (whole number answers)		Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Say how many rows in a given array e.g. How many rows of 5 are in an array of 3×5 ? Halve numbers to 12 Find $1 / 2$ of amounts

LOWER KEY STAGE 2

In Lower Key Stage 2, children build on the concrete and conceptual understandings they have gained in Key Stage 1 to develop a real mathematical understanding of the four operations, in particular developing arithmetical competence in relation to larger numbers.

Addition and subtraction: Children are taught to use place value and number facts to add and subtract numbers mentally and they will develop a range of strategies to enable them to discard the 'counting in 1s' or fingers-based methods of Key Stage 1. In particular, children will learn to add and subtract multiples and near multiples of 10,100 and 1000, and will become fluent in complementary addition as an accurate means of achieving fast and accurate answers to 3 -digit subtractions. Standard written methods for adding larger numbers are taught, learned and consolidated, and written column subtraction is also introduced.

Multiplication and division: This key stage is also the period during which all the multiplication and division facts are thoroughly memorised, including all facts up to 12×12. Efficient written methods for multiplying or dividing a 2-digit or 3-digit number by a 1-digit number are taught, as are mental strategies for multiplication or division with large but 'friendly' numbers, e.g. when dividing by 5 or multiplying by 20 .

Fractions and decimals: Children will develop their understanding of fractions, learning to reduce a fraction to its simplest form, as well as finding non-unit fractions of amounts and quantities. The concept of a decimal number is introduced and children consolidate a firm understanding of 1place decimals, multiplying and dividing whole numbers by 10 and 100.

Year 3

Know pairs with each total to 20

$$
\text { e.g. } 2+6=8,12+6=18,7+8=15
$$

Know pairs of multiples of 10 with a total of 100 Add any two 2-digit numbers by counting on in 10 s and 1 s or by using partitioning
Add multiples and near multiples of 10 and 100
Perform place-value additions without a struggle
e.g. $300+8+50=358$

Use place value and number facts to add a
1-digit or 2-digit number to a 3-digit number

$$
\text { e.g. } 104+56 \text { is } 160 \text { since } 104+50=154 \text { and }
$$

$$
6+4=10
$$

$$
676+8 \text { is } 684 \text { since } 8=4+4 \text { and }
$$

$$
76+4+4=84
$$

Add pairs of 'friendly' 3 -digit numbers
e.g. $320+450$

Preston Candover CE Primary School Mathematics Calculation Policy

	Begin to add amounts of money using partitioning	Begin to use compact column addition to add numbers with 3 digits Compact Column addition Begin to add like fractions $\text { e.g. } 3 / 8+1 / 8+1 / 8$ Recognise fractions that add to 1 $\begin{aligned} & \text { e.g. } 1 / 4+3 / 4 \\ & \text { e.g. } 3 / 5+2 / 5 \end{aligned}$	
$\begin{gathered} Y \\ - \end{gathered}$	Know pairs with each total to 20 e.g. $8-2=6$ e.g. $18-6=12$ e.g. $15-8=7$ Subtract any two 2-digit numbers Perform place-value subtractions without a struggle $\text { e.g. } 536-30=506$ Subtract 2-digit numbers from numbers G 100 by counting up e.g. $143-76$ is done by starting at 76 . Then add 4 (80), then add 20 (100), then add 43, making the difference a total of 67 Subtract multiples and near multiples of 10 and 100	Use counting up as an informal written strategy for subtracting pairs of 3-digit numbers Counting up method on a number line: Begin to subtract like fractions $\text { e.g. } 7 / 8-3 / 8$	Know pairs of numbers which make each total up to 10, and which total 20 Count up to subtract 2-digit numbers $\text { e.g. } 72-47$ Subtract multiples of 5 from 100 by counting up $\text { e.g. } 100-35$ Subtract multiples of 10 and 100

Preston Candover CE Primary School Mathematics Calculation Policy

	Subtract, when appropriate, by counting back or taking away, using place value and number facts Find change from $£ 1, £ 5$ and $£ 10$	Know by heart all the multiplication facts in the $\times 2, \times 3, \times 4, \times 5, \times 8$ and $\times 10$ tables Multiply whole numbers by 10 and 100 Recognise that multiplication is commutative Use place value and number facts in mental multiplication e.g. 30×5 is 15×10	Use partitioning (grid multiplication) to multiply 2-digit and 3-digit numbers by 'friendly' 1 -digit Partition teen numbers to multiply by a 1-digit number e.g. 3×14 as 3×10 and 3×4 Double numbers up to 50	Partitioning: Grid Multiplication

Preston Candover CE Primary School Mathematics Calculation Policy

Preston Candover CE Primary School Mathematics Calculation Policy

Year 4

Year 4			
	Mental calculation	Written calculation	Children will
$\begin{gathered} Y 4 \\ + \end{gathered}$	Add any two 2-digit numbers by partitioning or counting on Know by heart/quickly derive number bonds to 100 and to $£ 1$ Add to the next 100, $£ 1$ and whole number $\begin{aligned} & \text { e.g. } 234+66=300 \\ & \text { e.g. } 3 \cdot 4+0 \cdot 6=4 \end{aligned}$ Perform place-value additions without a struggle $\text { e.g. } 300+8+50+4000=4358$ Add multiples and near multiples of 10,100 and 1000 Add $£ 1,10$ p, 1 p to amounts of money Use place value and number facts to add 1-, 2-, 3and 4-digit numbers where a mental calculation is appropriate e.g. $4004+156$ by knowing that $6+4=10$ and that $4004+150=4154$ so the total is 4160	Column addition for 3-digit and 4-digit numbers: e.g. $\begin{array}{r} 5347 \\ 2286 \\ +1495 \\ 121 \\ \hline 9128 \\ \hline \end{array}$ Add like fractions $\text { e.g. } 3 / 5+4 / 5=7 / 5=12 / 5$ Be confident with fractions that add to 1 and fraction complements to 1 $\text { e.g. } 2 / 3+{ }_{-}=1$	Add any 2-digit numbers by partitioning or counting on Number bonds to 20 Know pairs of multiples of 10 with a total of 100 Add 'friendly' larger numbers using knowledge of place value and number facts Use expanded column addition to add 3-digit numbers
$Y 4$ -	Subtract any two 2-digit numbers Know by heart/quickly derive number bonds to 100 Perform place-value subtractions without a struggle $\text { e.g. } 4736-706=4030$ Subtract multiples and near multiples of 10,100 , 1000, $£ 1$ and 10 p Subtract multiples of $0 \cdot 1$ Subtract by counting up e.g. $503-368$ is done by adding $368+2+30+100+3$ (so we added 135) Subtract, when appropriate, by counting back or taking away, using place value and number facts Subtract $£ 1,10$ p, 1p from amounts of money	Use expanded column subtraction for 3- and 4-digit numbers Use complementary addition to subtract amounts of money, and for subtractions where the larger number is a near multiple of 1000 or 100 $\text { e.g. } 2002-1865$	Use counting up with confidence to solve most subtractions, including finding complements to multiples of 100 e.g. $512-287$ e.g. $67+_{-}=100$

Preston Candover CE Primary School Mathematics Calculation Policy

	Find change from $£ 10, £ 20$ and $£ 50$	Subtract like fractions $\text { e.g. } 4 / 5-3 / 5=1 / 5$ Use fractions that add to 1 to find fraction complements to 1 e.g. $1-2 / 3=1 / 3$	
$\begin{gathered} Y 4 \\ x \end{gathered}$	Know by heart all the multiplication facts up to 12×12 Recognise factors up to 12 of 2-digit numbers Multiply whole numbers and 1-place decimals by 10, 100, 1000 Multiply multiples of 10, 100 and 1000 by 1-digit numbers e.g. 300×6 e.g. 4000×8 Use understanding of place value and number facts in mental multiplication e.g. 36×5 is half of 36×10 e.g. $50 \times 60=3000$ Partition 2-digit numbers to multiply by a 1-digit number mentally e.g. 4×24 as 4×20 and 4×4 Multiply near multiples by rounding $\text { e.g. } 33 \times 19 \text { as }(33 \times 20)-33$ Find doubles to double 100 and beyond using partitioning Begin to double amounts of money e.g. $£ 35 \cdot 60$ doubled is $£ 71 \cdot 20$	Use a vertical written method to multiply a 1-digit number by a 3-digit number (ladder method) Multiplication Ladder Method: 637×8 240 56 Use an efficient written method to multiply a 2-digit number by a number between 10 and 20 by partitioning (grid method)	Know by heart multiplication tables up to 10×10 Multiply whole numbers by 10 and 100 Use the grid method to multiply a 2-digit or a 3 -digit number by a number ≤ 6

Preston Candover CE Primary School Mathematics Calculation Policy

UPPER KEY STAGE 2

Children move on from dealing mainly with whole numbers to performing arithmetic operations with both decimals and fractions.

Addition and subtraction: Children will consolidate their use of

 written procedures in adding and subtracting whole numbers with up to 6 digits and also decimal numbers with up to 2 decimal places. Mental strategies for adding and subtracting increasingly large numbers will also be taught. These will draw upon children's robust understanding of place value and knowledge of number facts. Negative numbers will be added and subtracted.
Multiplication and division: Efficient and flexible

 strategies for mental multiplication and division are taught and practised, so that children can perform appropriate calculations even when the numbers are large, such as 40 000×6 or $40000 \div 8$. In addition, it is in Years 5 and 6 that children extend their knowledge and confidence in using written algorithms for multiplication and division.Fractions, decimals, percentages and ratio: Fractions and decimals are also added, subtracted, divided and multiplied, within the bounds of children's understanding of these more complicated numbers. Children will also calculate simple percentages and ratios.

Year 5

	Mental calculation	Written calculation	Children will
$\begin{aligned} & Y 5 \\ & + \end{aligned}$	Know number bonds to 1 and to the next whole number Add to the next 10 from a decimal number $\text { e.g. } 13 \cdot 6+6 \cdot 4=20$ Add numbers with 2 significant digits only, using mental strategies $\begin{aligned} & \text { e.g. } 3 \cdot 4+4 \cdot 8 \\ & \text { e.g. } 23000+47000 \end{aligned}$ Add 1- or 2-digit multiples of 10, 100, 1000, 10000 and 100000 e.g. $8000+7000$ e.g. $600000+700000$ Add near multiples of 10, 100, 1000, 10000 and 100000 to other numbers $\text { e.g. } 82472+30004$ Add decimal numbers which are near multiples of 1 or 10, including money $\begin{aligned} & \text { e.g. } 6 \cdot 34+1.99 \\ & \text { e.g. } £ 34.59+£ 19.95 \end{aligned}$	Use column addition to add two or three whole numbers with up to 5 digits Use column addition to add any pair of 2-place decimal numbers, including amounts of money Column addition: Begin to add related fractions using equivalences $\text { e.g. } 1 / 2+1 / 6=3 / 6+1 / 6$ Choose the most efficient method in any given situation	Add numbers with only 2 digits which are not zeros $\text { e.g. } 3 \cdot 4+5 \cdot 8$ Derive swiftly and without any difficulty number bonds to 100 Add 'friendly' large numbers using knowledge of place value and number facts Use expanded column addition to add pairs of 4- and 5-digit numbers

Preston Candover CE Primary School Mathematics Calculation Policy
Use place value and number facts to add two or more
'friendly' numbers, including money and decimals
e.g. $3+8+6+4+7$
e.g. $0.6+0.7+0.4$
e.g. $2056+44$

Subtract numbers with 2 significant digits only, using mental strategies
e.g. $6.2-4.5$
e.g. $72000-47000$

Subtract 1- or 2-digit multiples of $10,100,1000$, 10000 and 100000
e.g. $8000-3000$
e.g. $60000-200000$

Subtract 1- or 2-digit near multiples of 10, 100,
1000, 10000 and 100000 from other numbers
e.g. $82472-30004$

Subtract decimal numbers which are near multiples of 1 or 10 , including money
e.g. $6.34-1.99$
e.g. $£ 34.59-£ 19.95$

Use counting up subtraction, with knowledge of number bonds to 10,100 or $£ 1$, as a strategy to perform mental subtraction
e.g. $£ 10-£ 3.45$
e.g. 1000-782

Recognise fraction complements to 1 and to the next whole number

$$
\text { e.g. } 1^{2} / 5+3 / 5=2
$$

Use compact or expanded column subtraction to subtract numbers with up to 5 digits

Column subtraction	
$942-214$	Compact
Expanded method	Method

Derive swiftly and without difficulty number bonds to 100 Use counting up with confidence to solve most
subtractions, including finding complements to multiples of 1000

$$
\text { e.g. } 3000-2387
$$

Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000
Use complementary addition for subtractions of decimal numbers with up to 2 places, including amounts of money
Begin to subtract related fractions using equivalences

$$
\text { e.g. } 1 / 2-1 / 6=2 / 6
$$

Choose the most efficient method in any given situation

Preston Candover CE Primary School Mathematics Calculation Policy

Know by heart all the multiplication facts up to
12×12
Multiply whole numbers and 1- and 2-place decimals by 10, 100, 1000, 10000
Use knowledge of factors and multiples in
multiplication

$$
\begin{aligned}
& \text { e.g. } 43 \times 6 \text { is double } 43 \times 3 \\
& \text { e.g. } 28 \times 50 \text { is } 1 / 2 \text { of } 28 \times 100=1400
\end{aligned}
$$

Use knowledge of place value and rounding in mental multiplication

$$
\text { e.g. } 67 \times 199 \text { as } 67 \times 200-67
$$

Use doubling and halving as a strategy in mental multiplication
e.g. 58×5 is half of 58×10
e.g. 34×4 is 34 doubled twice

Partition 2-digit numbers, including decimals, to multiply by a 1-digit number mentally
e.g. 6×27 as 6×20 (120) plus 6×7 (42)
e.g. 6.3×7 as 6×7 (42) plus 0.3×7 (2.1)

Double amounts of money by partitioning
e.g. $£ 37.45$ doubled is $£ 37$ doubled ($£ 74$) plus

45 p doubled (90p) giving a total of $£ 74.90$

Use short multiplication to multiply a 1 -digit number by a number with up to 4 digits

Short Multiplication Method:

Use long multiplication to multiply 3-digit and 4-digit numbers by a number between 11 and 20 Choose the most efficient method in any given situation

Long Multiplication Method:

Know multiplication tables to 11×11
Multiply whole numbers and 1-place decimals by 10, 100 and 1000
Use knowledge of factors as aids to mental multiplication

$$
\begin{aligned}
& \text { e.g. } 13 \times 6 \text { is double } 13 \times 3 \\
& \text { e.g. } 23 \times 5 \text { is } 1 / 2 \text { of } 23 \times 10
\end{aligned}
$$

Use the grid method to multiply numbers with up to 4 digits by 1-digit numbers
Use the grid method to multiply 2-digit numbers by 2-digit numbers

Preston Candover CE Primary School Mathematics Calculation Policy

Find simple percentages of amounts

e.g. $10 \%, 5 \%, 20 \%, 15 \%$ and 50%

Begin to multiply fractions and mixed numbers by whole numbers ≤ 10

$$
\text { e.g. } 4 x^{2} / 3=8 / 3=2^{2} / 3
$$

Know by heart all the division facts up to
$144 \div 12$
Divide whole numbers by 10, 100, 1000, 10000 to give whole number answers or answers with
1, 2 or 3 decimal places
Use doubling and halving as mental division strategies

$$
\text { e.g. } 34 \div 5 \text { is }(34 \div 10) \times 2
$$

Use knowledge of multiples and factors, as well as
tests for divisibility, in mental division
e.g. $246 \div 6$ is $123 \div 3$
e.g. We know that 525 divides by 25 and by 3
Halve amounts of money by partitioning e.g. $1 / 2$ of $£ 75 \cdot 40=1 / 2$ of $£ 75(£ 37.50)$ plus half of 40 p (20p) which is $£ 37.70$
Divide larger numbers mentally by subtracting the 10th or 100th multiple as appropriate

$$
\begin{aligned}
& \text { e.g. } 96 \div 6 \text { is } 10+6 \text {, as } 10 \times 6=60 \text { and } \\
& 6 \times 6=36 \\
& \text { e.g. } 312 \div 3 \text { is } 100+4 \text { as } 100 \times 3=300 \text { and } \\
& 4 \times 3=12
\end{aligned}
$$

Know tests for divisibility by 2, 3, 4, 5, 6, 9 and 25 Know square numbers and cube numbers
Reduce fractions to their simplest form

Know by heart division facts up to $121 \div 11$
Divide whole numbers by 10, 100 or 1000 to give answers with up to 1 decimal place
Use doubling and halving as mental division strategies
Use an efficient written method to divide numbers ≤ 1000 by 1-digit numbers
Find unit fractions of 2- and 3-digit numbers

Preston Candover CE Primary School Mathematics Calculation Policy

Year 6

Year 6			
	Mental calculation	Written calculation	Children will...
	Know by heart number bonds to 100 and use these to derive related facts $\text { e.g. } 3.46+0.54$ Derive, quickly and without difficulty, number bonds to 1000 Add small and large whole numbers where the use of place value or number facts makes the calculation doable mentally $\text { e.g. } 34000+8000$ Add multiples of powers of 10 and near multiples of the same $\text { e.g. } 6345+199$ Add negative numbers in a context such as temperature where the numbers make sense Add two 1-place decimal numbers or two 2 -place decimal numbers less than 1 $\begin{aligned} & \text { e.g. } 4.5+6.3 \\ & \text { e.g. } 0.74+0.33 \end{aligned}$ Add positive numbers to negative numbers e.g. Calculate a rise in temperature or continue a sequence beginning with a negative number	Use column addition to add numbers with up to 5 digits Use column addition to add decimal numbers with up to 3 decimal places Line up the decimal points Add mixed numbers and fractions with different denominators	Derive, swiftly and without difficulty, number bonds to 100 Use place value and number facts to add 'friendly' large or decimal numbers $\begin{aligned} & \text { e.g. } 3 \cdot 4+6 \cdot 6 \\ & \text { e.g. } 26000+54000 \end{aligned}$ Use column addition to add numbers with up to 4-digits Use column addition to add pairs of 2-place decimal numbers
	Use number bonds to 100 to perform mental subtraction of any pair of integers by complementary addition e.g. 1000-654 as $46+300$ in our heads Use number bonds to 1 and 10 to perform mental subtraction of any pair of 1-place or 2-place decimal numbers using complementary addition and including money e.g. $10-3.65$ as $0.35+6$	Use column subtraction to subtract numbers with up to 6 digits	Use number bonds to 100 to perform mental subtraction of numbers up to 1000 by complementary addition e.g. $1000-654$ as $46+300$ in our heads Use complementary addition for subtraction of integers up to 10000 $\text { e.g. } 2504-1878$ Use complementary addition for subtractions of 1-place decimal numbers and amounts of money $\text { e.g. } £ 7 \cdot 30-£ 3 \cdot 55$

Preston Candover CE Primary School Mathematics Calculation Policy

$$
\text { e.g. } £ 50-£ 34.29 \text { as } 71 p+£ 15
$$

Use number facts and place value to perform mental subtraction of large numbers or decimal numbers with up to 2 places

$$
\text { e.g. } 467900-3005
$$

$$
\text { e.g. } 4 \cdot 63-1.02
$$

Subtract multiples of powers of 10 and near multiples of the same
Subtract negative numbers in a context such as temperature where the numbers make sense
Know by heart all the multiplication facts up to
12×12
Multiply whole numbers and decimals with up to
3 places by 10, 100 or 1000

$$
\begin{aligned}
& \text { e.g. } 234 \times 1000=234000 \\
& \text { e.g. } 0.23 \times 1000=230
\end{aligned}
$$

Identify common factors, common multiples and prime numbers and use factors in mental multiplication

$$
\text { e.g. } 326 \times 6 \text { is } 652 \times 3 \text { which is } 1956
$$

Use place value and number facts in mental multiplication

$$
\begin{aligned}
& \text { e.g. } 4000 \times 6=24000 \\
& \text { e.g. } 0.03 \times 6=0.18
\end{aligned}
$$

Use doubling and halving as mental multiplication strategies, including to multiply by $2,4,8,5,20,50$ and 25

$$
\text { e.g. } 28 \times 25 \text { is a quarter of } 28 \times 100=700
$$

Use rounding in mental multiplication

$$
\text { e.g. } 34 \times 19 \text { as }(34 \times 20)-34
$$

Multiply 1- and 2-place decimals by numbers up to and including 10 using place value and partitioning
e.g. 3.6×4 is $12+2.4$
e.g. 2.53×3 is $6+1.5+0.09$

Double decimal numbers with up to 2 places using

Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000 or 10000
Use complementary addition for subtractions of decimal numbers with up to 3 places, including money Subtract mixed numbers and fractions with different denominators

Use short multiplication to multiply a 1-digit number by a number with up to 4 digits
Use short multiplication to multiply a 1-digit number bu a number with 1 or 2 decimal places, including Short Multiplication Method:

Short Multiplication Method:

$£ 32 \cdot 43 \times 6$

Use long multiplication to multiply a 2-digit number by a number with up to 4 digits

Know by heart all the multiplication facts up to
12×12
Multiply whole numbers and 1- and 2-place decimals by 10,100 and 1000
Use an efficient written method to multiply a
1-digit or a teen number by a number with up to 4 digits by partitioning (grid method)
Multiply a 1 -place decimal number up to 10 by a number ≤ 100 using the grid method

Preston Candover CE Primary School Mathematics Calculation Policy

	partitioning e.g. 36.73 doubled is double 36 (72) plus double 0.73 (1.46)	Multiply fractions and mixed numbers by whole numbers Multiply fractions by proper fractions Use percentages for comparison and calculate simple percentages	
$\begin{gathered} \text { Y6 } \\ \div \end{gathered}$	Know by heart all the division facts up to $144 \div 12$ Divide whole numbers by powers of 10 to give whole number answers or answers with up to 3 decimal places Identify common factors, common multiples and primes numbers and use factors in mental division $\text { e.g. } 438 \div 6 \text { is } 219 \div 3 \text { which is } 73$ Use tests for divisibility to aid mental calculation Use doubling and halving as mental division strategies, for example to divide by $2,4,8,5,20$ and 25 e.g. $628 \div 8$ is halved three times: 314, 157, 78.5 Divide 1- and 2-place decimals by numbers up to and including 10 using place value $\begin{aligned} & \text { e.g. } 2.4 \div 6=0.4 \\ & \text { e.g. } 0.65 \div 5=0.13 \\ & \text { e.g. } £ 6.33 \div 3=£ 2.11 \end{aligned}$ Halve decimal numbers with up to 2 places using partitioning e.g. Half of 36.86 is half of 36 (18) plus half of 0.86 (0.43) Know and use equivalence between simple fractions, decimals and percentages, including in different contexts Recognise a given ratio and reduce a given ratio to its lowest terms	Use short division to divide a number with up to 4 digits by a 1-digit or a 2-digit number Use long division to divide 3-digit and 4-digit numbers by 'friendly' 2-digit numbers Give remainders as whole numbers or as fractions or as decimals Divide a 1-place or a 2-place decimal number by a number ≤ 12 using multiples of the divisors Divide proper fractions by whole numbers Lonq division: $\begin{array}{rc} 2 5 \longdiv { 4 3 5 } & \\ -\frac{0}{43} & \text { Remainder: } \\ -\frac{25}{185} & 10 \\ -\frac{175}{10} & \frac{10}{25} \end{array}$	Know by heart all the division facts up to $144 \div 12$ Divide whole numbers by 10, 100, 1000 to give whole number answers or answers with up to 2 decimal places Use an efficient written method, involving subtracting powers of 10 times the divisor, to divide any number of up to 1000 by a number ≤ 12 $\text { e.g. } 836 \div 11 \text { as } 836-770(70 \times 11) \text { leaving } 66$ which is 6×11, giving the answer 76 Divide a 1 -place decimal by a number ≤ 10 using place value and knowledge of division facts

Preston Candover CE Primary School Mathematics Calculation Policy

